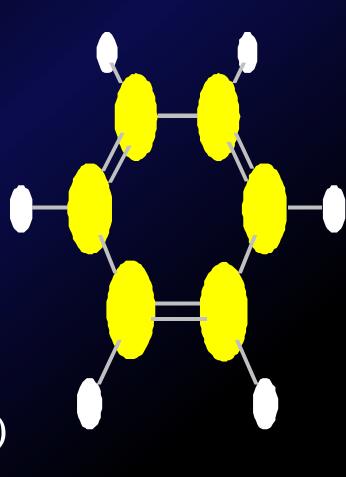
Landfill Gas and Confined Spaces

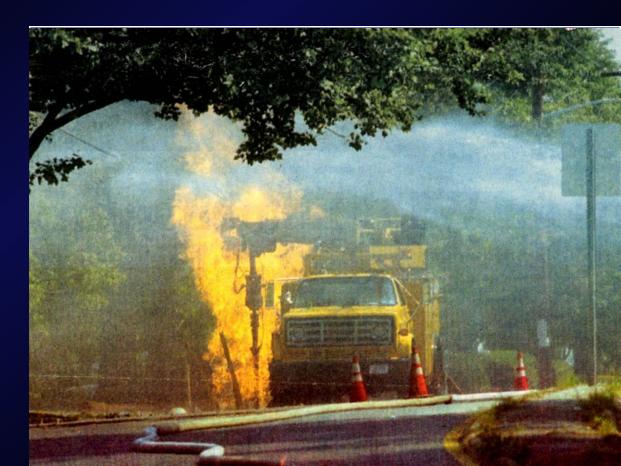
With Lock - Out

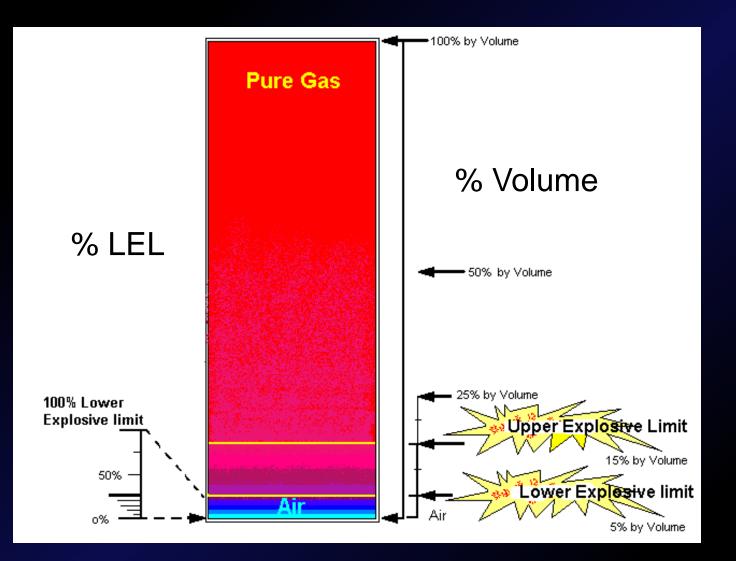

Chris Marlowe, CIH CDM Smith

Garbage to Gas (Anaerobic Bacteria) $(C_6H_{10}O_5) + H_2O \rightarrow \rightarrow \rightarrow 3CH_4 + 3CO_2$ \diamond Up to 60% Methane (CH₄)_v Variable amounts of: -water vapor, -carbon dioxide (CO_2) , -hydrogen sulfide (H_2S) , -carbon monoxide (CO)

Components of Landfill Gas

Traces of:


♦Benzene Ethyl Benzene ◆Toluene Vinyl Chloride ♦ Dichloromethane Trichloroethylene (TCE) ♦1,2, Dichloroethylene Tetrachloroethylene(PCE)



Basic Principle

Never Allow Flammable Mixtures of

airfuel andenergy

LEL= 5% Gas by Volume = 50,000 ppm UEL=15% Gas by Volume = 150,000 ppm

Hydrogen Sulfide Absorbed through the lungs Strong odor, but Olfactory Fatigue Heavier than air (drops to ground) Test for H₂S before going ♦ in or ♦ down

Hydrogen Sulfide in Landfills

♦ H₂S is usually below 100 ppm

- High sulfate (e.g. gypsum) levels produce high levels of H₂S
- Construction debris containing wallboard

NIOSH IDLH

- Immediately Dangerous to Life and Health (IDLH)
- Irreversible health effects or Escape impairing symptoms
 Within 30 minutes
 Hydrogen Sulfide's IDLH
 - ♦300 ppm

Explosion Control Measures Perform work while wet Minimize sparks Minimize exposure of fill Use temporary flare Monitor gas all the time Stop spark-producing work when levels > 10% of LEL

Air <u>Monitoring</u>

Monitor continuously for
Dust emissions
Gas and vapor emissions
Combustible gases
In work zone

Action Levels

 Triggers for changes in ♦ operation, evacuation, or ♦ more PPE Base triggers on ♦ OELs and instruments you will use

Work Area Action Levels

Contaminant	Action Level	Action Required
Combustible Gas	25% LEL	Prevent Sparks
Hydrogen Sulfide	10 ppm	Respirator
Total Dust	500 µg/m ³	Respirator
Organic Vapor	5 ppm	Respirator
		12

Oxygen Deficiency Concentration Action Taken <19.5% O₂ Enter only with Air 19.5 - 23.5% Work continues >23.5% O₂ Work must stop

NOTE: What dilutes O₂ to 20%, is at 44,700 ppm

A COMPILATION OF LANDFILL GAS FIELD PRACTICES AND PROCEDURES

HEALTH AND SAFETY SECTION

SWANA LANDFILL GAS DIVISION HEALTH & SAFETY TASK FORCE

VACUUM IS YOUR FRIEND

- Vacuum in the system means that small leaks are inward
- Leaks appear as higher oxygen levels at the flare
 Enough air can extinguish the flame
- Protect the vacuum

When adding a sampling port

Combustible gas indicator

- Explosion-safe drill
- Manual drill

 0.3 millijoule of static electricity is enough to ignite methane

Safety Plans and Programs

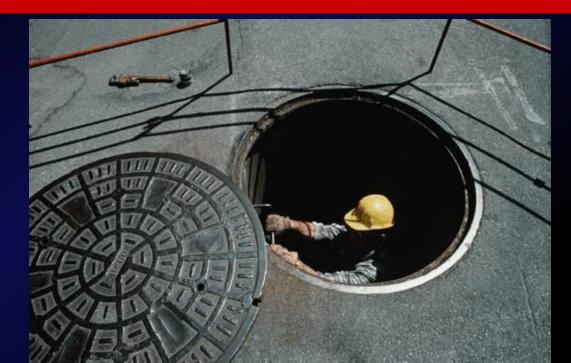
- Accident Prevention Program
- Noise Control.
- Dust Control.
- Respiratory Protection
- Confined Space Entry Safety
- Medical Surveillance
 - ♦ Often optional
- Safety Training
 - hazardous materials
 - hazardous waste training?

HEALTH AND SAFETY PLAN FORM		This document is for the
CDM Health and Safety Program		use of CDM and its sub
PROJECT NAME	Adams Brush Manufacturing	PROJECT
JOBSITE ADDRESS	94-02 104th Street	CLIENT
	Queens, New York 11416	CLIENT
		CLIENT
() AMENDMENT TO () H&SP AMENDME	EXISTING APPROVED H&SP: NT NUMBER?	? () DATE
OBJECTIVES OF FIE	LD WORK:	Type Check as man
(e.g. collect surface so	il samples):	
		Active
To drill soil borings wi	ith a Geoprobe, as well as a	
hollow stem auger drill rig; to obtain soil samples		Inactive
from both the Geopro	be and auger rig; to	
install monitoring wells; to collect groundwater		Secure
samples from the mor	nitoring wells.	
		Unsecure

Personal Protection

- Full-length trousers.
- Shirt with sleeves and a collar
- Steel toe and shank footwear:
- Hardhat:
- High-visibility vest
 - (for heavy equipment)
- Safety glasses with side shields:

Well Drilling and Construction Owner's representative all the time Avoid the borehole You could fall in Buddy system Subsurface surprises Cover every night.


Figure 10.47. Bucket auger rigs can be used to construct water wells in weakly consolidat formations. (Gus Pech Manufacturing Co., Inc.)

Emergency Preparedness

Federal OSHA regulations followed for emergencies
You'll require
Community Communication Plan
Emergency Alerting
Response Procedures

When is a Space Not Confined?

CONFINED SPACES ARE:

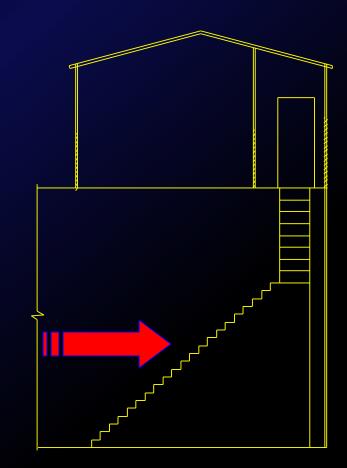
Big Enough to Enter, and Not Designed for People, and Hard to Enter or Exit

Big Enough to Enter

- Your Whole Body Would Fit Both:
 - Inside the Space, and
 - Through the Opening

Definition of Entry

Occurs, "As soon as any part of the entrant's body breaks the plane of an opening into the space."



Not Designed for People

- Never Filled with Dense Material
- Heat, Light, & Ventilation
- Tall Enough to Stand up
- Meets Building Codes
- You Could Put Your Desk There

Hard to Enter or Exit

- Doorways are Easy
- Stairs are Easy
- Ladders are Hard
- Hatches are Hard
- Crouching is Hard
- Crawling is Hard

CONFINED SPACE DANGERS

- Oxygen deficient,
- Toxic, or
- Explosive
- Engulfing
- Entrapping
- Mechanical

No Hazard Spaces

- Most Valve Vaults
- New Pipelines without
 - Connection
 - Gassy soil
 - Concrete sealant
 - Water present

29 CFR 1910.146 (c)(5)(i)

Alternate procedures allowed if

- Bad air is the only hazard
- Ventilation alone is sufficient
- Monitoring & inspection prove that
- Entry follows special permit

Summary Conclusion

- Many small spaces are not confined per OSHA
- Many large spaces <u>are</u>
- Many confined spaces require no permit
- Special permits will suffice for many confined spaces

Lockout / Tagout

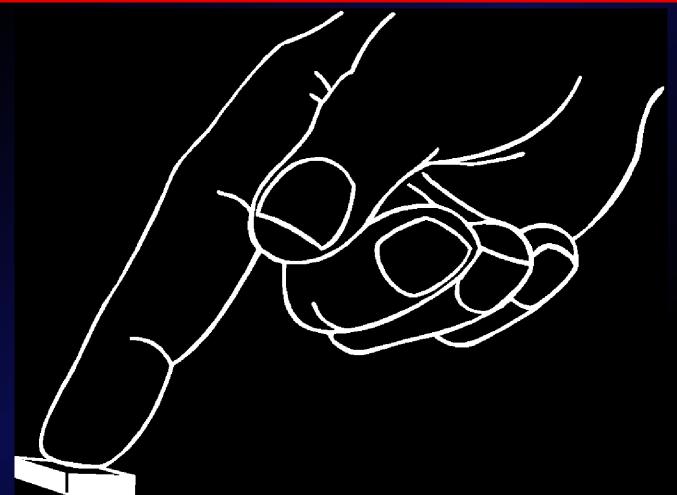
Unexpected equipment startups account for 100 injuries each day

Some fatal.

Lockout/Tagout

 Types of Personnel "Authorized" "Affected" "Other" "Tagout" Procedure

DO NOT TURN OFF


Lockout Procedure

- Each Person Has His or Her Own Safety Lock(s)
 - Use Special Locks
 - Stock Lock Out Equipment
- Flexible Cord and Plug
- Plug in Your Possession

Step 1 - Prepare for shutdown.

- What kind of energy is used?
- Which energy sources need lock out?
- Tell other workers you are shutting down.

Step 2 -Shut the equipment Off

Step 3 - Isolate equipment from every power source.

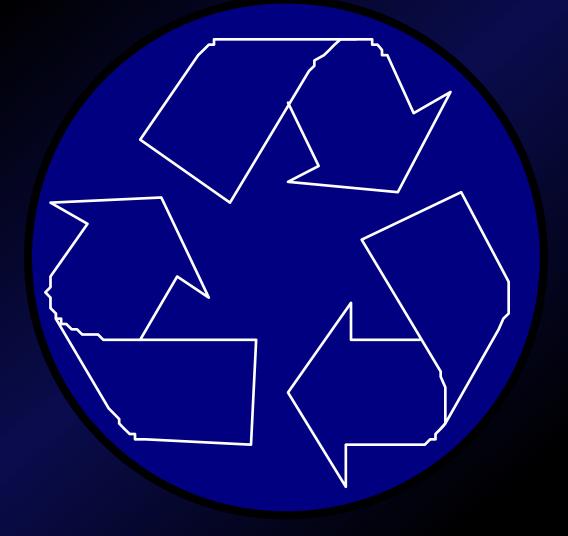
- Don't just shut the power off.
 - Close valves.
 - Throw main disconnects
- Block or blank auxiliary systems.
 - (hydraulic or pneumatic)

Step 4 - Lock and tag primary <u>& secondary energy sources.</u>

Step 5 - Control stored energy.

- Even with power off:
 - Consider residual energy
 - Check for moving parts

- Vent or drain trapped pressure.
- Install electrical ground wires
- Block or support elevated equipment.


Step 6 - Clear the area and double-check your steps.

- Warn other employees
- Make sure the area is clear.
- Ensure that all:
 - equipment is locked out
 - energy has been contained or released.

Perform Work

Reverse the Order

Any Questions?

